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BATTERIES, IDENTIFIED FRACTAL OBJECTS 
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Summary 

We interpret the dependence of a battery’s capacity upon the rate of 
discharge (Peukert’s law) as the consequence of the fractality of the cell 
electrodes characterized by their fractal dimension. The exponent in 
Peukert’s equation may be obtained using several experimental procedures, 
one of which is a method of renormalisation of galvanostatic discharge 
curves. 

Introduction 

It is well known that the efficiency of electrochemical batteries at dif- 
ferent rates of discharge depends on both chemical processes and the geom- 
etry of the electrodes. These two factors are intimately connected and their 
effects are not easily separated. Several advanced models are available to 
describe the coupling between them. . 

These models currently pertain to a simple reaction which takes place 
in ideal porous electrodes and requires several empirical parameters. The 
profusion of these parameters and the need to adjust them in order to obtain 
convergent solutions necessitates the use of a computer. These models are 
useful for predicting the discharge behaviour of idealised systems but are of 
limited value for practical cells. 

It can be shown that the application of the TEISI model (Transfer% 
d’Energie sur Interface a Similitude Interne) [l - 31 in the framework of 
the fractal geometry [4] to this problem-see also ref. 10 -allows the 
coupling between the discharge curves and the geometry of the electrodes 
to be described in a relatively simple manner. 

Fundamental properties of galvanostatic discharges 

The discharge of an electrochemical cell may be carried out in several 
ways (i.e., constant load, constant current, constant power). In this note we 
focus our attention on constant current discharge. 
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Fig. 1. Galvanostatic discharge of alkaline commercial R6 batteries at 20 “C. 

The temptation to treat the galvanostatic response of an electrochemical 
system as the linear response to a step of current is strong. An examination 
of standard discharge curves under constant current conditions (potential 
uersus time), however, renders such a proposal untenable, as may be seen 
from the typical discharge curves shown in Fig. 1. 

A discharge curve generally exhibits three distinct regions: 
- an instantaneous potential drop; 
- a smooth potential decrease; 
- a final rapid potential drop. 

The last potential drop represents a non-linear process (crystallization, 
species depletion . ..) and is of particular interest to battery makers since it 
signals the end of the useful discharge. 

It is also clear that no single transfer function - connecting the voltage 
(or output of the system) to the current (or input) - can lead to this charac- 
teristic voltage. In consequence, responses to two different current densities 
may not be deduced from each other in a simple way. One concludes that 
the system is not linear in terms of current (I) and voltage (E) and, although 
they are the parameters usually measurable, they cannot be used in linear 
theories. We show, however, that a way exists of applying linear system 
techniques to this problem in order to break away from the local kinetic 
parameters of the medium. The irreversible kinetics in porous media 
display, especially in their electrochemistry, some invariants to which a 
meaning must be found. 

An example of an experimental invariant is given by the well-known 
Peukert’s law [5 J, that capacity is inversely proportional to the current 
density to a power it. Let C designate the total capacity obtained under cur- 
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rent I from time t = 0 to the time t = to where the potential reaches a given 
value E,, (Fig. 1). We have: 

c = Ito 

The quantity C is a decreasing function of the current density and is known 
to behave according to Peukert’s law [ 53 : 

c = c,J-” (1) 

where Cst is a parameter of the battery depending on E,,. In the case of lead- 
acid batteries, several studies [5 - 71 have shown that n is close to 0.4. With 
n = 0, the battery behaves ideally according to the Faraday balance; with 
n = 1, eqn. (l), known as Sand’s law, is characteristic of diffusion limited 
discharge on a planar interface. Figure 2 shows that the data of Fig. 1 fit 
eqn. (1) with n = 0.38, E. being taken equal to 0. 
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Fig. 2. Peukert’s law (Eo = 0) for discharges obtained in Fig. 1. 

Moreover, it may be shown that Peukert’s exponent, n, is insensitive 
to the cut off value, E,,, provided that the discharge curves have been cor- 
rected for ohmic voltage drop. Equally, a particular constant current dis- 
charge curve (Ii) may be superposed on another curve at constant current 
(Iz) by a transformation of the t axis in the ratio (Ii/1,)“, together with 
a translation along the E axis to take the instantaneous potential drop into 
account. One may also plot E versus log(t) for different current densities and 
check that the curves are translated from one to another by a factor along 
the t axis of n[log(li) - log&)]. 

Figure 1 was transformed in this manner by using the I = 100 mA curve 
as a reference; the result is shown in Fig. 3. 
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Fig. 3. Normalized discharge curves from Fig. 1. 

By using a particular curve as a reference, one may take the complexity 
of the reaction into account without any knowledge of it. We may even 
totally disregard chemical kinetics, since it can be shown that n does not 
depend on them. 

The easiest way to prove the accuracy of this assumption is to modify 
the kinetics of the chemical reactions. Consider the discharge curves of 
batteries identical to those of Fig. 1 when lowering the temperature from 
20 “c to -40 “C. We thereby alter the various reactions and/or mass 
transport kinetics, as evidenced by a comparison of the shapes of the dis- 
charge curves. The superposition principle, however, still applies with a 
roughly unchanged Peukert’s exponent (Figs. 4 and 5). 
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Fig. 4. Normalized discharge curves of alkaline R6 batteries at -40 “C. 
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Fig. 5. Peukert’s law (I& = 0) for R6 alkaline batteries at 40 ‘C. 

These facts are general and were checked on various electrochemical 
systems (either macro or micro, organic or mineral, solid or liquid . . .). The 
experimental conclusion is that the origin of Peukert’s law should be found 
in the invariance of the geometry of the system. 

It might be thought that we observed diffusion in a porous media, 
although one would expect n to be larger than 1 (the planar diffusion case). 
Most of the systems, however, exhibit, at higher rates of discharge, a second 
slope much larger than the first one, corresponding to a second exponent 
m > 1. The shapes of the discharge curves are also distorted and one can 
only superimpose curves associated with the same exponent. The capacity 
diagrams are then composed of three domains (Fig. 6). At the lowest 
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Fig. 6. Capacity diagram (Eo = 0) for commercial Li-liquid cathode batteries at -40 “C. 
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regimes, the capacity is nominal and independent of current density but, at 
intermediate regimes, 

CI” = c,t (0 < 12 < 1) 

and, at highest regimes, 

cr” = c,t (l<m) 

We demonstrated, in the same manner as for n, that m is independent of the 
local chemical kinetics. 

A fractal interpretation for Peukert’s law 

We give here arguments according to which n is related to the non- 
integer dimension of the electrode and determined only by its fractal charac- 
ter. 

Let us consider a linear charge transfer upon an Euclidian interface 
controlled by a change of the electrochemical potential of the reactive 
species p(t). 

It is well known that the linear thermodynamic transfer function, 
determined by the double layer and the exchange current, is given by: 

1 
F(o) a 

l+iwr 

The thermodynamic response to a pulse excitation 6(t) = 1 for t = 0, is then 
given by: 

(a(t) a exp(--t/T) 

Le MBhaut4 has shown [I - 31 that porous electrodes may often be consid- 
ered as fractals, that is to say characterized by a non-integer fractal dimen- 
sion d (2 <d B 3). The thermodynamic response of the electrode is then 
written as a convolution product between fractal geometry and the local 
kinetics. As a result, the following thermodynamic transfer function is found 
in place of eqn. (2): 

F(o) a 
I 

1 + (ic.d7)“da 
d,=d-1 

where the constant 1 in the denominator signifies some proximity with 
equilibrium or stationary state, as in the case of impedance measurements. 
According to these hypotheses, the response to a pulse is given by [ 81: 

ca 

@(O a l/r c 
(_1)y-e + l)(t/@(” + 1) 

n=o F(1 + cr(n + 1)) 

Let us now consider the application of a constant current density I at 
the electrode. We shall hypothesise that the local thermodynamic intensive 
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parameter governing the electrode polarization (for instance, the electro- 
chemical potential) is related to the current by the mean of a transfer func- 
tion such as eqn. (3), although one cannot use the measured I and E values 
which we found to be inadequate linear variables in our conditions. Equation 
(3) gives the relationship between I and the local potential [I@(t)]. The 
electrical state of the electrode is determined by the step response through 
an unknown function \k of the local potential (\k being Nemstian or not): 

E(t) = \k[I@(t)] (4) 

On the other hand, the capacity under constant current conditions is 
proportional to the time: 

c = It (5) 

We now choose a value E, for E(t). From eqns. (4) and (5), and for all 
values of I we have: 

Eo = * [l@(c/r)l 

that is to say: 

I@(c!/I) = c,t (6) 

As pointed out above, the use of 1 in eqn. (3) implies some proximity 
to equilibrium. It expresses the existence of a transfer resistance. This 
resistance is not a constant for large current densities, but is an exponentially 
increasing function of it. For this reason, we shall hypothesise that the local 
kinetics of the electrode are no longer governed by eqn. (3), but by a trans- 
fer function of the form: 

1 
F(O) a (iaT) /da 

then: 

aqc/I) a (C/Ipda 

and, from eqn. (6): 

@a - i= c st 

According to this analysis, the role of the fractal dimension may be 
recognised in the Peuckert’s law (Figs. 2, 5) with: 

n = d, -l=d-2 

Two comments should be made: 

(8) 

- Peukert’s law is obtained whatever the relationship (\k) between the 
electrical and the chemical potentials of the electrode. The counterpart is 
that Q(t) does not allow us to determine the polarization of the electrode 
directly. 

-The analysis is based on the assumption that the local behaviour is 
linear and d, is a constant. Such an hypothesis does not hold at very long 
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times, when non-linear processes (cry&N&ion, passivation, phase transi- 
tion . . .) can occur. 

Larger current densities involve chemical diffusion. In the academic 
case of semi-infinite diffusion on a planar interface, the transfer function 
to be used is the classical Warburg one [9]: 

F(o) a l/(i~+‘~ 

For a fractal electrode, this becomes [2, 31: 

F(o) a l/(iWr)l/db (9) 

where db = 2(d - 1)/(3 - d) 

In a manner similar to that of the previous paragraph, we obtain Peukert’s 
law in the diffusion case: 

cr” = c,t 

m=d,---1 

m = (3d - 5)/(3 -d) 

the exponents n and m are then related by: 

m = (3n + l)/(l -n) (16) 

This last relation is in good agreement with experimental data on various 
systems, as shown in Fig. 6. The difficulty with experimental measurements 
in the diffusion regime must, nevertheless, be stressed (especially thermal 
effects at high rates). 

Fundamental properties of non-galvanostatic responses 
Galvanostatic discharge is only one particular type of transient 

response. Many other experimental electrochemical methods may be ex- 
tended in the same way to heterogeneous materials. We give two examples. 

(i) Current step relaxation 
In the case of relaxation, one applies a current step for a time, tl, and 

then allows the system to rest for a time, t, > tl; for a linear system, the 
relaxation curve is symmetric to the discharge curve. In our case, both curves 
are related through Peukert’s exponent in a more complicated way, allowing 
a direct determination of the exponent. Let us denote Ed the potential for 
the discharge at time td and E,, rj the relaxation one at time tl + t, (both 
corrected for ohmic drop: see Fig. 7). Using the linear properties of @, we 
can write: 

Ed = \k[I<PJ 

E,+ 1) = W*,,+ 1) - I@,1 

When the potentials are equal, we get: 

@d = @(r+ 1) - @P, (11) 
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Fig. 7. Discharge at Z = 300 mA and relaxation (ohmic drop corrected) of an alkaline 
R6 battery at 20 “C. Inset: numerical determination of d, using lower formula (d, = 1.4 
to be compared with d, = 1.38 as determined by eqn. (8) and data of Figs. 2 and 5). 

for both diffusion and transfer far from equilibrium: 

Q’(t) a tljdawl 

eqn. (11) then becomes: 

(t, + tr)l/d, - trl/da = tdl/da 
(1% 

d, was calculated in Fig. 7 by determining the best fit to this relation for 
large td and found to be compatible with Peukert’s exponent value as found 
in Fig. 2. We stress that one should only use such a method when the ohmic 
drop is constant over the discharge. 

(ii) Cyclic voltametry 
The dependence upon the sweep rate voltage of the peak current for 

linear sweep voltamperometry on a planar interface is known to be quad- 
ratic : 

I2 0: v 

For a rough interface, we expect the result to be different. 
Generally, the local parameter p(t) is given by a convolution product: 

b(t) = i(t)*&(t) (13) 

where i(t) designates the current sequence through the electrode. Under the 
same hypothesis as for eqn. (4): 

P(t) = ~-‘[mt)l 
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then, using eqn. (13): 

*-‘[E(t)] = i(t)*&(t) 

In the case of a linear potential sweep, E(t) = E” + ut: 

W’[vt] = i(t)*@t) 

taking the Fourier transform of this last equation, we get: 

T(s) = l/VG-‘(s/V)l/sl/&s) (s=iw) 

taking (I[, as (a(t) 0: tl’da-l 

i(t) 0: [\k-l(~t)*(l/~t)l’da]~l’da - ul/da 

When \k is such that i(t) is maximised, the amplitude of the maximum 
depends on ul’da. Then the peak current and the sweep rate are related by: 

Ida a u 

It is then possible to get the value of the Peukert’s exponent from potentio- 
dynamic peaks. Figure 8 shows that the positive electrodes used by the bat- 
teries, Fig. 1, in alkaline media exhibit a sweep rate dependence in good 
agreement with d, = 1.38 as found in Fig. 2. 

POSITIVE IN 8N KOH 20°C 

SWEEP RATE (InVfS) 

Fig. 8. Linear sweep voltamperometry on positive electrodes built with the manganese 
dioxide used in alkaline R6 batteries (free electrolyte). 

Conclusion 

Using the conclusions of the TEISI model, and assuming linear local 
behaviour during discharge, we have linked the Peuckert’s exponent to the 
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Fig. 9. Normalized creep curves for PVC. Inset: “Peukert’s diagram” from these data. 
The results suggest diffusion of chains in a fractal media with d = 2.8. This value is 
consistent with the hehaviour currently observed in linear vlscoelasticity [ll, 121. 

heterogeneity of the electrodes. Various transient experimental procedures 
may be used to determine this exponent and bear out the linear hypothesis. 
This, and advanced theoretical aspects, are discussed elsewhere [lo]. 

This procedure is not limited to electrochemical systems. Transfer 
functions such as eqns. (3) and (9) are currently observed in other fields 
of physics [ll] and the conclusions may also apply to these systems as well, 
as shown in Fig. 9 for the case of polymer creep. 

List of symbols 

I 
E 
t 

to 
Eo 
C 

Gt 
n 

Y 
I2 

F(o) 

Go 

d 

Intensity 
Electrical potential 
Time 
Referenced time 
Referenced potential 
Faradic capacity 
Constant depending on E. 
Peukert’s exponent in the transfer regime 
Peukert’s exponent in the diffusional regime 

Referenced intensities 
Transfer function 
Frequency function (= 2nf] 
Relaxation function 
Fractal dimension 
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Ed 

Er 

td 

tr 

t1 

V 

P 
. 

;: 

S 

Apparent dimension [= (d - l)] 
Diffusion index [= 2(d - 1)/(3 - d)] 
Characteristic time 
Gamma function 
Thermodynamic function giving the electrical polarization of the 
electrode against thermodynamic local parameter 
Potential during discharge 
Potential during relaxation 
Time during discharge 
Time during relaxation 
Duration of the current pulse 
Potential sweep rate 
Thermodynamic local parameter (concentration, activity.. .) 
Time derivation 
Inverse function 
Initial potential for linear voltametry 
Laplace variable (s = io) 
Fourier transform 
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